大家好,今天小编关注到一个比较有意思的话题,就是关于英人造卫星神秘位移的问题,于是小编就整理了3个相关介绍英人造卫星神秘位移的解答,让我们一起看看吧。
卫星绕地球一周的平均速度是?
平均速度的定义是位移除以时间,卫星绕地球一周,其位移是0,所以此时卫星的平均速度为0。在这里一定要区分好平均速度和平均速率的定义,平均速率是路程除以时间。
比如说一个人用40秒绕操场跑完一周400米,此时平均速度为0,平均速率为10米每秒。
卫星分低轨卫星,中轨卫星,高轨卫星。其中高轨道卫星轨道高度距离地球表面大约36000公里,与地球相对静止,因此理论上绕地球平均速度为0。
卫星绕地球一圈 大约为40076千米,地球赤道半径6378.137千米,极半径6356.752千米,平均半径约6371千米,赤道周长大约为40076千米,呈两极稍扁赤道略鼓的不规则的椭圆球体。地球表面积5.1亿平方公里,其中71%为海洋,29%为陆地,在太空上看地球呈蓝色。
谁知道人造卫星上的陀螺仪的构造是怎样的?
陀螺仪:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
陀螺仪在卫星通信中主要应用于动中通。应用于卫星通信动中通的目前市场上主要是光纤陀螺仪和激光陀螺仪
光纤陀螺仪是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变,决定了敏感元件的角位移。光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻。与激光陀螺仪相比,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本低。
激光陀螺仪的原理是利用光程差来测量旋转角速度。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。
星星中,肉眼可以看到不断移动的物体是什么?
大概是卫星,不可思议吧,卫星体积那么小,但部分卫星在地球上的确可以用肉眼看到。我国第一颗人造卫星“东方红一号”的其中一个设计要求就是要让百姓都看得到。
夜空中有一类星星,它们发光的特点和一般的星星没有区别,亮度还挺高,但是却可以相对其它星星较快地移动,这类星星肯定不是恒星,恒星距离地球都很远,相对地球的位置比较稳定,短时间内难以肉眼看到明显的位移,也不可能是流星、彗星,它们一般都带有尾巴,如果持续观察它们的行进路径,可以发现这类星星会在夜空中划出一条稍带点弧度的线,并且不需要多长时间,几个小时就能从夜空的一端到另一端,钻入地平线之下。这类行星就是卫星、空间站等人造天体,由于距离地球比较近,外部也会覆盖一些反光隔热的材料,在地面已经进入夜晚的时候,地球外几百公里的高空还可能看到阳光,如果反光角度合适,地面上的人就能肉眼观测到。
比较著名的是美国铱星公司的“铱星闪光”,上世纪末的十数年,美国铱星公司发射了不少通讯卫星到太空,显著的特点就是能够肉眼观测,亮度最高可以达到-8至-9等,夜晚除月亮外,夜空中最亮的星星是金星,视星等可以达到-4.5等,而满月的星等是-16等,可将铱星有多亮,是由于铱星卫星特殊的铝合金天线构造,可以强烈地反射阳光,不过绝大多数都没有那么亮,仅仅是肉眼勉强可以观测的程度。我国东方红一号卫星当年的设计目标是“上得去、抓得住、听得见、看得见”,在当年被要求能够在地面用肉眼看得到它。可限于当年我国火箭的实力,东方红一号直径只有1米左右,在地面上观测亮度会在6到7等,很难用肉眼观测,于是当年的科学家们想到了让东方红一号拖拽一个反光性能好的充气球体,实现了肉眼看到它的可能。
目前肉眼最容易观测的人造天体大概是国际空间站,因为它的体积很大,并且距离地面只有400多公里,角度合适的化,它甚至能够成为夜空中第三亮的星星。
到此,以上就是小编对于英人造卫星神秘位移的问题就介绍到这了,希望介绍关于英人造卫星神秘位移的3点解答对大家有用。
还没有评论,来说两句吧...